Pronóstico de la demanda turística en Chile: Análisis regional utilizando un Modelo Autorregresivo Estacional Regional Analysis Using the Seasonal Autoregressive Model

Main Article Content

Cristian Mauricio Mondaca-Marino Ailin Arriagada Millaman Pedro V. Piffaut

Resumen

Conocer el comportamiento de la demanda turística permite a los planificadores de política pública tomar mejores decisiones respecto a cómo administrar los servicios turísticos y priorizar las diferentes inversiones e intervenciones en los territorios. El presente trabajo aporta a la comprensión de este comportamiento al describir la demanda turística de Chile, tanto a nivel país como para cada una de sus regiones durante el período 2014:01 a 2019:02, aplicando la metodología SARIMA (Modelo autorregresivo estacional de media móvil) para modelar la dinámica de crecimiento de la demanda en cada caso. Los resultados permiten identificar que aquellos modelos mejor ajustados para cada región y el país capturan los crecimientos no lineales, patrones estacionales y volatilidades de cada serie, permitiendo describir conductas no tan evidentes como el orden del proceso estacional, o tendencias de crecimiento de largo plazo. Las proyecciones de demanda regionales y del país presentan un bajo porcentaje de error, menor al 2%, el cual se encuentra subestimado en ciertos casos y sobreestimado en otros.

Article Details

Como citar
MONDACA-MARINO, Cristian Mauricio; ARRIAGADA MILLAMAN, Ailin; PIFFAUT, Pedro V.. Pronóstico de la demanda turística en Chile: Análisis regional utilizando un Modelo Autorregresivo Estacional. El Periplo Sustentable, [S.l.], n. 41, p. 234 - 254, nov. 2021. ISSN 1870-9036. Disponible en: <https://rperiplo.uaemex.mx/article/view/12975>. Fecha de acceso: 30 nov. 2021 doi: https://doi.org/10.36677/elperiplo.v0i41.12975.
Sección
Artículos

Citas

Amisano, G. and C. Giannini (1997). Topics in Structural VAR Econometrics. 2nd ed. Heidelberg: Springer.
Becketti, S. (2013). Introduction to Time Series Using Stata. College Station, TX: Stata Press.
Box, G. E., Jenkins, G., Reinsel, G. C. & Ljung, G. M. (2016). Time series analysis: forecasting and control (5th ed.). New Jersey: John Wiley & Sons.
Box, G. E. P., Jenkins, G. M. & MacGregor, J. F. (1974). Some Recent Advances in Forecasting and Control. Applied Statistics, 23(2), 158. https://doi.org/10.2307/2346997.
Brida, J. G. & Garrido, N. (2011). Tourism forecasting using SARIMA models in Chilean regions. International Journal of Leisure and Tourism Marketing, 2(2), 176. https://doi.org/10.1504/ijltm.2011.038888.
Chatziantoniou, I., Degiannakis, S., Eeckels, B. & Filis, G. (2016). Forecasting tourist arrivals using origin country macroeconomics. Applied Economics, 48(27), 2571-2585. https://doi.org/10.1080/00036846.2015.1125434.
Chu, F.-L. (2008). A fractionally integrated autoregressive moving average approach to forecasting tourism demand. Tourism Management, 29(1), 79-88. https://doi.org/10.1016/J.TOURMAN.2007.04.003.
Dogru, T., Sirakaya-Turk, E. & Crouch, G. I. (2017). Remodeling international tourism demand: Old theory and new evidence. Tourism Management, 60, 47-55. https://doi.org/10.1016/J.TOURMAN.2016.11.010.
Du Preez, J. & Witt, S. F. (2003). Univariate versus multivariate time series forecasting: an application to international tourism demand. International Journal of Forecasting, 19(3), 435-451. https://doi.org/10.1016/S0169-2070(02)00057-2.
Goh, C. & Law, R. (2002). Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management, 23(5), 499-510. https://doi.org/10.1016/S0261-5177(02)00009-2.
Goh, C. & Law, R. (2011). The Methodological Progress of Tourism Demand Forecasting: A Review of Related Literature. Journal of Travel & Tourism Marketing, 28(3), 296-317. https://doi.org/10.1080/10548408.2011.562856.
Gustavsson, P. & Nordström, J. (2001). The Impact of Seasonal Unit Roots and Vector ARMA Modelling on Forecasting Monthly Tourism Flows. Tourism Economics, 7(2), 117-133. https://doi.org/10.5367/000000001101297766.
Hamilton, J. D. (1994). Time series analysis. United States of American: Princeton University Press.
Hassani, H., Silva, E. S., Antonakakis, N., Filis, G. & Gupta, R. (2017). Forecasting accuracy evaluation of tourist arrivals. Annals of Tourism Research, 63, 112-127. https://doi.org/10.1016/J.ANNALS.2017.01.008.
Kim, J. H., Wong, K., Athanasopoulos, G. & Liu, S. (2011). Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals. International Journal of Forecasting, 27(3), 887-901. https://doi.org/10.1016/J.IJFORECAST.2010.02.014.
Kulendran, N. & Witt, S. F. (2003). Forecasting the Demand for International Business Tourism. Journal of Travel Research, 41(3), 265-271. https://doi.org/10.1177/0047287502239034.
Lim, C. & McAleer, M. (2001). Forecasting tourist arrivals. Annals of Tourism Research, 28(4), 965-977. https://doi.org/10.1016/S0160-7383(01)00006-8.
Lim, C. & McAleer, M. (2002). Time series forecasts of international travel demand for Australia. Tourism Management, 23(4), 389-396. https://doi.org/10.1016/S0261-5177(01)00098-X.
Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer Science & Business Media.
Martins, L. F., Gan, Y. & Ferreira-Lopes, A. (2017). An empirical analysis of the influence of macroeconomic determinants on World tourism demand. Tourism management, 61, 248-260.
Morley, C., Rosselló, J. & Santana-Gallego, M. (2014). Gravity models for tourism demand: theory and use. Annals of Tourism Research, 48, 1-10. https://doi.org/10.1016/j.annals.2014.05.008.
Peng, B., Song, H. & Crouch, G. I. (2014). A meta-analysis of international tourism demand forecasting and implications for practice. Tourism Management, 45, 181-193. https://doi.org/10.1016/J.TOURMAN.2014.04.005.
Song, H. & Li, G. (2008). Tourism demand modelling and forecasting-A review of recent research. Tourism Management, 29(2), 203-220. https://doi.org/10.1016/J.TOURMAN.2007.07.016.
Song, H., Qiu, R. T. R. & Park, J. (2019). A review of research on tourism demand forecasting. Annals of Tourism Research, 75, 338-362. https://doi.org/10.1016/J.ANNALS.2018.12.001.
Song, H. & Witt, S. F. (2011). Tourism demand modelling and forecasting : modern econometric approaches. Routledge: Taylor & Francis.
Stock, J. H. & Watson, M. W. (2001). Vector autoregressions. Journal of Economic perspectives, 15(4), 101-115.
Subsecretaria de Turismo de Chile (2020). Estadísticas. Estadisticas website: http://www.subturismo.gob.cl/documentos/estadisticas/, [June 10, 2020].
UNESCO (United Nations Educational, Scientific and Cultural Organization) (2020). Historic Quarter of the Seaport City of Valparaíso. World Heritage List website: https://whc.unesco.org/en/list/959/, [August 15, 2020].